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ABSTRACT
To model lifetime data, the study suggests a new class of distributions termed the
Odds One Parameter Polynomial Exponential-G family of distributions. Incomplete
moments, Mean deviations, Lorenz and Bonferroni curves, Moments of residual and
reversed residual life, Shape, Quantile function, Entropy, Order Statistics, Stress-
Strength reliability, and other structural and reliability properties are discussed.
Estimation of the parameters involved has been described by the maximum likeli-
hood method. The results of simulation studies have been reported. Four data sets
have been analyzed to demonstrate the applicability of the class of distributions.

KEYWORDS
Mixture distribution, Odds function, Reliability properties, Structural properties,
T-X family of distributions.

1. Introduction

Data analytics is now a crucial tool for the growth and development of any corporate
organization, whether it is the manufacturing or service industries. As data patterns
become more complex over time, traditional probability distributions cannot accu-
rately depict the proper distributional structure of quantitative data. For analyzing
intricately structured industrial data, transformed distributions using classical proba-
bility distributions as bases could be used efficiently.
By McDonald (1984), Azzalini (1985), Marshall and Olkin (1997), and others, several
generic techniques for generating a new family of distributions are proposed, and their
features and statistical inference are investigated. The work of Eugene et al. (2002)
at the beginning of the century saw the development of the beta-generated family of
distributions. By substituting the Kumaraswamy distribution for the beta distribu-
tion, Jones (2009) and Cordeiro and deCastro (2011) followed the extension of the
beta-generated family of distributions.
A generalized family of distributions known as the T-X (also known as Transformed-
Transformer) family was proposed by Alzaatreh et al. (2013), whose cumulative dis-
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tribution function (cdf) is given by

F (v; θ) =

∫ W [G(v)]

a
r(t)dt, (1)

where, the random variable T ∈ [a, b], for −∞ < a, b < ∞ and W [G(v)] be a function
of the cdf G(v) so that W [G(v)] satisfies the following conditions:

(i) W [G(v)] ∈ [a, b],
(ii) W [G(v)] is differentiable and monotonically non-decreasing,
(iii) W [G(v)] → a as v → −∞ and W [G(v)] → b as v → ∞.

For studying the life of any product/service, the widely used probability law is the
exponential distribution because of its simple and interesting character. Moreover, sta-
tistical inference is relatively easy and comprehensive for practitioners and scientists.
Due to its flexibility in some aspects, such as the mode, mean deviation, moments,
skewness and kurtosis measurements, failure rate and mean residual life, entropies,
etc., the Lindley distribution has recently gained favour over the exponential distribu-
tion. The mixture of an exponential distribution and a gamma distribution with shape
parameter 2 results in the Lindley distribution.
The probability density function (pdf) of the Lindley distribution [see, Lindley (1958)]
is given by

f(v;λ) =
λ2

1 + λ
(1 + v)e−λv, λ, v > 0.

A host of authors has made generalizations of this model from different angles. Zak-
erzadeh and Dolati(2010), Bakouch et al. (2012), Shanker et al. (2013), Elbatal et al.
(2013), Ghitany et al. (2013), Singh et al. (2014), Abouamoh et al. (2015), among oth-
ers, are worth mentioning. Bouchahed and Zeghdoudi (2018) have proposed a new and
unified approach to generalizing Lindley’s distribution. The generalized distribution
may be called a one-parameter polynomial exponential (OPPE) family of distributions.
Some structural properties like moments, skewness, kurtosis, median, mean deviations,
Lorenz curve, entropies, and limiting distribution of extreme order statistics; reliabil-
ity properties like reliability function, hazard rate, stress-strength reliability, stochastic
ordering; and estimation methods like the method of moment and maximum likelihood
have been investigated. The pdf of the random variable X belonging to OPPE family
can be written as

fV (v;λ) =

∑s
k=0 akv

ke−λv∑s
k=0 ak

Γ(k+1)
λk+1

, λ, v > 0. (2)

The distribution can also be written as

fV (v;λ) = h(λ)

s∑
k=0

akv
ke−λv = h(λ)

s∑
k=0

ak
Γ(k + 1)

λk+1
fGA(v; k + 1, λ)

where, h(λ) = 1∑s
k=0 ak

Γ(k+1)

λk+1

, and fGA(v; k+1, λ) is a gamma pdf with shape parameter

(k+1) and scale parameter λ, and ak’s are non-negative constants. A mixture of (s+1)
gamma distributions constitutes the distribution.
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The exponential (for s = 0, a0 = 1), Lindley (for s = 1, a0 = 1, a1 = 1 ), Akash
(for s = 2, a0 = 1, a1 = 0, a2 = 1) [c.f. Shankar(2015a)], Aradhana (for s = 2,
a0 = 1, a1 = 2, a2 = 1) [c.f. Shankar(2016a)], Sujatha (for s = 2, a0 = 1, a1 = 1,
a2 = 1) [c.f. Shankar(2016b)], length-biased Lindley (for s = 2, a0 = 0, a1 = 1, a2 = 1)
[c.f. Ayesha(2017)], Amarendra (for s = 3, a0 = 1, a1 = 1, a2 = 1, a3 = 1) [c.f.
Shankar(2016c)], Devya (for s = 4, a0 = 1, a1 = 1, a2 = 1, a3 = 1, a4 = 1) [c.f.
Shankar(2016d)], Shambhu (for s = 5, a0 = 1, a1 = 1, a2 = 1, a3 = 1, a4 = 1, a5 = 1)
distribution [c.f. Shankar(2016e)] are special cases.
In the article, we propose a new wider class of continuous distributions called the Odds

One-Parameter Polynomial Exponential - G family by taking W [G(v)] = G(v;ξ)
1−G(v;ξ) ,

the odds function of cdf and r(t) = h(λ)
∑s

k=0 akt
ke−λt, t > 0, λ > 0, the gener-

ator. Here G(v; ξ) is a baseline cdf, which depends on a parameter vector ξ and
Ḡ(v; ξ) = 1 − G(v; ξ) is the survival function. Γ(p, v) =

∫∞
v wp−1e−wdw, the up-

per incomplete gamma function and γ(p, v) =
∫ v
0 wp−1e−wdw, the lower incomplete

gamma function for v ≥ 0, p > 0 respectively are the notations used in the ar-
ticle. Γ(j)(p, v) =

∫∞
v (lnw)jwp−1e−wdw and γ(j)(p, v) =

∫ v
0 (lnw)

jwp−1e−wdw, for

v ≥ 0, p > 0 respectively are the jth derivative with respect to p. Maiti and Pra-
manik (2015, 2016a, 2016b) developed the Odds Generalized Exponential-Exponential,
Exponential-Uniform, and Exponential-Pareto distributions. The properties were stud-
ied and illustrated with applications. Maiti and Pramanik (2018) also developed a
family of distributions known as the Odds xgamma-G family, using the xgamma dis-
tribution as the generator.
The cdf of Odds OPPE - G family of distributions is given by

F (v;λ, ξ) =

∫ G(v;ξ)

1−G(v;ξ)

0
h(λ)

s∑
k=0

akt
ke−λtdt

= 1− h(λ)

s∑
k=0

ak
Γ
(
k + 1, λG(v;ξ)

Ḡ(v;ξ)

)
λk+1

(3)

where, h(λ) = 1∑s
k=0 ak

Γ(k+1)

λk+1

The probability density function (pdf) of Odds OPPE - G family of distribution is

f(v;λ, ξ) = h(λ)

s∑
k=0

ak
g(v; ξ)

[Ḡ(v; ξ)]2

[
G(v; ξ)

Ḡ(v; ξ)

]k
e
−λ

[
G(v;ξ)

Ḡ(v;ξ)

]
. (4)

The survival function of Odds OPPE - G family of distributions is

S(v;λ, ξ) = h(λ)

s∑
k=0

ak
Γ
(
k + 1, λG(v;ξ)

Ḡ(v;ξ)

)
λk+1

. (5)
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Table 1. Distributions and corresponding G(v; ξ)/Ḡ(v; ξ) functions

Distribution G(v; ξ)/Ḡ(v; ξ) ξ

Uniform(0 < v < θ) v/(θ − v) θ
Exponential(v > 0) eλv − 1 λ
Weibull(v > 0) eλv

γ − 1 (λ, γ)
Frechet(v > 0) (eλv

γ − 1)−1 (λ, γ)
Half-logistic(v > 0) (ev − 1)/2 ϕ
Power function(0 < v < 1/θ) [(θv)−k − 1]−1 (θ, k)
Pareto(v ≥ θ) (v/θ)k − 1 (θ, k)
Burr XII(v > 0) [1 + (v/s)c]k − 1 (s, k, c)
Log-logistic(v > 0) [1 + (v/s)c]− 1 (s, c)
Lomax(v > 0) [1 + (v/s)]k − 1 (s, k)
Gumbel(−∞ < v < ∞) [exp[exp(−(v − µ)/σ)]− 1]−1 (µ, σ)
Kumaraswamy(0 < v < 1) (1− va)−b − 1 (a, b)
Normal(−∞ < v < ∞) Φ((v − µ)/σ)/(1− Φ((v − µ)/σ)) (µ, σ)

The hazard rate function of Odds OPPE - G family of distribution is

h(t;λ, ξ) =
f(t;λ, ξ)

S(t;λ, ξ)

=

∑s
k=0 ak

g(t;ξ)
[Ḡ(t;ξ)]2

[
G(t;ξ)
Ḡ(t;ξ)

]k
e
−λ

[
G(t;ξ)

Ḡ(t;ξ)

]
∑s

k=0 ak
Γ
(
k+1,λG(t;ξ)

Ḡ(t;ξ)

)
λk+1

. (6)

Odds function for different distributions and parameter vector ξ have been pre-
sented in Table 1.
The article is structured as follows. Section 2 discusses specific models assuming trans-
former distribution as Uniform, Exponential, and Burr XII. Section 3 discusses some
mathematical properties such as Mixture Representation, Shape, Quantile function,
Entropy, Order Statistics, Stress-Strength reliability, Incomplete moments, Mean de-
viations, Lorenz and Bonferroni curves, and Moments of residual and reversed resid-
ual life. In section 4, the maximum likelihood approach to parameter estimation was
discussed. The simulation study methodology has been outlined, and section 5 shows
simulation findings. In section 6, the fitting of the suggested model has been addressed
and reported for four data sets. There are concluding remarks in section 7.

2. Some Special Models for Odds OPPE - G Family

In this section, some new special distributions, namely, Odds OPPE-Uniform, Odds
OPPE-Exponential, Odds OPPE-Pareto, and Odds OPPE-Burr XII are introduced.
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Table 2. Different forms of Odds OPPE - Uniform Distribution

Distribution Name Density Function

Odds Exponential - Uniform[20](s = 0, a0 = 1) f(v;λ, θ) = λθ
(θ−v)2 e

− λv

θ−v

Odds Lindley - Uniform(s = 1, a0 = 1, a1 = 1) f(v;λ, θ) = λ2

1+λ
θ2

(θ−v)3 e
− λv

θ−v

Odds Akash - Uniform(s = 2, a0 = 1, a1 = 0, a2 = 1) f(v;λ, θ) = λ2

1+λ
θ2

(θ−v)3 e
− λv

θ−v

Odds Aradhana - Uniform(s = 2, a0 = 1, a1 = 2, a2 = 1) f(v;λ, θ) = λ2

1+λ
θ2

(θ−v)3 e
− λv

θ−v

Odds Sujatha - Uniform(s = 2, a0 = 1, a1 = 1, a2 = 1) f(v;λ, θ) = λ2

1+λ
θ2

(θ−v)3 e
− λv

θ−v

2.1. Odds OPPE - Uniform Distribution

Consider the baseline distribution as uniform on the interval (0, θ), θ > 0 with the
pdf and cdf, respectively

g(v; θ) =
1

θ
; 0 < v < θ < ∞, G(v, θ) =

v

θ
.

The cdf of Odds OPPE-Uniform distribution is obtained by substituting the cdf of
uniform in (3) as follows

F (v;λ, θ) = 1− h(λ)

s∑
k=0

ak
Γ
(
k + 1, λv

θ−v

)
λk+1

.

The corresponding pdf is given by

f(v;λ, θ) = h(λ)

s∑
k=0

ak
θ

(θ − v)2

(
v

θ − v

)k

e−
λv

θ−v ; 0 < v < θ < ∞, λ > 0.

A few particular forms of pdf of Odds OPPE-Uniform distribution has been listed in
Table 2. Some shapes of pdf and survival function of the distribution are shown in
Figure 1.
The survival and hazard rate functions are given respectively as follows:

S(v;λ, θ) = h(λ)

s∑
k=0

ak
Γ
(
k + 1, λv

θ−v

)
λk+1

,

r(t;λ, θ) =

∑s
k=0 ak

θ
(θ−t)2

(
t

θ−t

)k
e−

λt

θ−t∑s
k=0 ak

Γ(k+1, λt

θ−t)
λk+1

.
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Figure 1. The pdf and survival function of Odds Lindley - Uniform distribution

2.2. Odds OPPE - Exponential Distribution

Let, the considered baseline distribution is Exponential with parameter θ > 0 having
the pdf and cdf, respectively

g(v; θ) = θe−θv ; 0 < v, θ < ∞, and G(v, θ) = 1− e−θv.

The cdf of Odds OPPE-Exponential distribution is obtained by substituting the cdf
of Exponential in (3) as follows

F (v;λ, θ) = 1− h(λ)

s∑
k=0

ak
Γ
(
k + 1, λ(eθv − 1)

)
λk+1

.

The corresponding pdf is given by

f(v;λ, θ) = h(λ)

s∑
k=0

akθe
θv(eθv − 1)ke−λ(eθv−1) ; 0 < v, θ < ∞, λ > 0.

Some particular forms of pdf of Odds OPPE-Exponential distribution have been pre-
sented in Table 3. Some shapes of pdf and survival function of the distribution are
shown in Figure 2.
The survival and hazard rate functions are as follows:

S(v;λ, θ) = h(λ)

s∑
k=0

ak
Γ
(
k + 1, λ(eθv − 1)

)
λk+1

,

r(t;λ, θ) =

∑s
k=0 akθe

θt(eθt − 1)ke−λ(eθt−1)∑s
k=0 ak

Γ(k+1,λ(eθt−1))
λk+1

.

6
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Table 3. Different forms of Odds OPPE - Exponential Distribution

Distribution Name Density Function

Odds Exponential - Exponential[19](s = 0, a0 = 1) f(v;λ, θ) = λθeθve−λ(eθv−1)

Odds Lindley - Exponential(s = 1, a0 = 1, a1 = 1) f(v;λ, θ) = λ2

(1+λ)θe
2θve−λ(eθv−1)

Odds Akash - Exponential(s = 2, a0 = 1, a1 = 0, a2 = 1) f(v;λ, θ) = λ3

(2+λ2)θe
θv
[
1 + (eθv − 1)2

]
e−λ(eθv−1)

Odds Aradhana - Exponential(s = 2, a0 = 1, a1 = 2, a2 = 1) f(v;λ, θ) = λ3

(2+2λ+λ2)θe
3θve−λ(eθv−1)

Odds Sujatha - Exponential(s = 2, a0 = 1, a1 = 1, a2 = 1) f(v;λ, θ) = λ3e−λ(eθv−1)

(2+λ+λ2) θeθv
[
eθv + (eθv − 1)2

]
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, θ

)
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0.0
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Figure 2. The pdf and survival function of Odds Lindley - Exponential distribution

2.3. Odds OPPE - Pareto Distribution

Suppose the baseline distribution is Pareto with parameters a and θ > 0 . The pdf
and cdf are

g(v; θ, a) =
θaθ

vθ+1
; a < v < ∞, θ > 0, G(v, θ, a) = 1−

(a
v

)θ
.

The cdf of Odds OPPE-Pareto distribution is obtained by substituting the cdf of
Pareto in (3) as follows

F (v;λ, θ, a) = 1− h(λ)

s∑
k=0

ak
Γ
(
k + 1, λ[

(
v
a

)θ − 1]
)

λk+1
.

The pdf is given by

f(v;λ, θ, a) = h(λ)

s∑
k=0

ak
θvθ−1

aθ

{(v
a

)θ
− 1

}k

e−λ[( v

a)
θ−1] ; a < v < ∞, θ > 0, λ > 0.

A list of particular forms of pdf of Odds OPPE-Pareto distribution has been given in
Table 4. Some shapes of pdf and survival function of the distribution are shown in

7
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Table 4. Different forms of Odds OPPE - Pareto Distribution
Distribution Name Density Function

Odds Exponential - Pareto[21](s = 0, a0 = 1) f(v;λ, θ, a) = λθ
aθ vθ−1e−λ{( v

a
)θ−1}

Odds Lindley - Pareto(s = 1, a0 = 1, a1 = 1) f(v;λ, θ, a) = λ2

(1+λ)
θv2θ−1

a2θ e−λ{( v

a
)θ−1}

Odds Akash - Pareto(s = 2, a0 = 1, a1 = 0, a2 = 1) f(v;λ, θ, a) = λ3

2+λ2
θvθ−1

aθ

[
1 +

{(
v
a

)θ − 1
}2
]
e−λ{( v

a
)θ−1}

Odds Aradhana - Pareto(s = 2, a0 = 1, a1 = 2, a2 = 1) f(v;λ, θ, a) = λ3

2+2λ+λ2
θvθ−1

aθ

(
v
a

)2θ
e−λ{( v

a
)θ−1}

Odds Sujatha - Pareto(s = 2, a0 = 1, a1 = 1, a2 = 1) f(v;λ, θ, a) = λ3e−λ{( v
a

)θ−1}
2+λ+λ2

θvθ−1

aθ

[(
v
a

)θ
+
{(

v
a

)θ − 1
}2
]
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Figure 3. The pdf and survival function of Odds Lindley - Pareto distribution

Figure 3.
The survival and hazard rate functions are as follows:

S(v;λ, θ, a) = h(λ)

s∑
k=0

ak
Γ
(
k + 1, λ[

(
v
a

)θ − 1]
)

λk+1
,

r(t;λ, θ, a) =

∑s
k=0 ak

θtθ−1

aθ

{(
t
a

)θ − 1
}k

e−λ[( t

a)
θ−1]

∑s
k=0 ak

Γ
(
k+1,λ[( t

a)
θ−1]

)
λk+1

.

2.4. Odds OPPE - Burr XII Distribution

Considering the baseline distribution as Burr (1942) with the following pdf and cdf

g(v;α, θ) = αθv(α−1) (1 + vα)−(θ+1) ; v ≥ 0, α, θ > 0,

G(v;α, θ) = 1− (1 + vα)−θ ; v ≥ 0, α, θ > 0,

8
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Figure 4. The pdf and survival function of Odds Lindley - Bur XII distribution

the cdf of Odds OPPE-Burr XII distribution is obtained by substituting the cdf of
Burr XII in (3) as follows

F (v;λ, α, θ) = 1− h(λ)

s∑
k=0

ak
Γ
(
k + 1, λ[(1 + vα)θ − 1]

)
λk+1

.

The corresponding pdf is given by

f(v;λ, α, θ) = h(λ)

s∑
k=0

akαθv
α−1(1 + vα)θ−1

[
(1 + vα)θ − 1

]k
e−λ[(1+vα)θ−1];

0 < v, θ, α < ∞, λ > 0.

Some particular forms of pdf of Odds OPPE-Burr XII distribution have been presented
in Table 5. Some shapes of pdf and survival function of the distribution are shown in
Figure 4.
The survival and hazard rate functions are given as follows:

S(v;λ, α, θ) = h(λ)

s∑
k=0

ak
Γ
(
k + 1, λ[(1 + vα)θ − 1]

)
λk+1

,

r(t;λ, α, θ) =

∑s
k=0 akαθt

α−1(1 + tα)θ−1
[
(1 + tα)θ − 1

]k
e−λ[(1+tα)θ−1]∑s

k=0 ak
Γ(k+1,λ[(1+tα)θ−1])

λk+1

.

9
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Table 5. Different forms of Odds OPPE - Burr XII Distribution
Distribution Name Density Function
Odds Exponential - Burr XII(s = 0, a0 = 1) v/(θ − v)

Odds Lindley - Burr XII(s = 1, a0 = 1, a1 = 1) f(v;λ, α, θ) = λ2

1+λαθv
α−1 (1 + vα)2θ−1 e−λ[(1+vα)θ−1]

Odds Akash - Burr XII(s = 2, a0 = 1, a1 = 0, a2 = 1) f(v;λ, α, θ) = λ3αθvα−1(1+vα)θ−1

(2+λ2)eλ[(1+vα)θ−1]

[
1 +

{
(1 + vα)θ − 1

}2]
Odds Aradhana - Burr XII(s = 2, a0 = 1, a1 = 2, a2 = 1) f(v;λ, α, θ) = λ3αθvα−1

(2+2λ+λ2) (1 + vα)3θ−1 e−λ[(1+vα)θ−1]

Odds Sujatha - Burr XII(s = 2, a0 = 1, a1 = 1, a2 = 1) f(v;λ, α, θ) = λ3αθvα−1(1+vα)θ−1

(2+λ+λ2)eλ[(1+vα)θ−1]

[
(1 + vα)θ +

{
(1 + vα)θ − 1

}2]

3. Some Mathematical Properties

In this section, some general results of the Odds OPPE - G family are derived.

3.1. Mathematical Expansions

Expansion formulae of the Odds OPPE - G family, such as the pdf and cdf, are derived.
The probability density function (pdf) of the Odds OPPE - G family of distributions
is given by

f(v;λ, ξ) = h(λ)

s∑
k=0

ak
g(v; ξ)

[Ḡ(v; ξ)]2

[
G(v; ξ)

Ḡ(v; ξ)

]k
e
−λ

[
G(v;ξ)

Ḡ(v;ξ)

]

= h(λ)

s∑
k=0

ak
g(v; ξ)

[Ḡ(v; ξ)]2

[
G(v; ξ)

Ḡ(v; ξ)

]k ∞∑
i=0

(−1)i

i!
λi

[
G(v; ξ)

Ḡ(v; ξ)

]i
= h(λ)

s∑
k=0

∞∑
i=0

(−1)iakλ
i

i!

g(v; ξ)[G(v; ξ)]k+i

[Ḡ(v; ξ)]k+i+2

= h(λ)

s∑
k=0

∞∑
i=0

(−1)iakλ
i

i!
g(v; ξ)[G(v; ξ)]k+i[Ḡ(v; ξ)]−(k+i+2)

= h(λ)

s∑
k=0

∞∑
i,j=0

(−1)iakλ
i

i!

(
i+ j + k + 1

j

)
g(v; ξ)[G(v; ξ)]i+j+k

=

∑s
k=0

∑∞
i,j=0wijk(λ)hi+j+k(v; ξ)∑s

k=0wk(λ)
(7)

where, wijk(λ) = (−1)iakλi

i!

(
i+j+k+1

j

)
, wk(λ) = ak

Γ(k+1)
λk+1 , and hi+j+k(v; ξ) =

g(v; ξ)[G(v; ξ)]i+j+k.
The cdf of V is given by

F (v;λ, ξ) =

∫ v

0
f(t;λ, ξ)dt

=

∑s
k=0

∑∞
i,j=0wijk(λ)

∫ x
0 g(t; ξ)[G(t; ξ)]i+j+kdt∑s

k=0wk(λ)

=

∑s
k=0

∑∞
i,j=0wijk(λ)

[G(v;ξ)]i+j+k+1

i+j+k+1∑s
k=0wk(λ)

. (8)
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3.2. Shapes of the Odds OPPE - G family of distribution

The shapes of the density and hazard rate functions can also be described analytically.
Now,

f(v;λ, ξ) = h(λ)

s∑
k=0

ak
g(v; ξ)

[Ḡ(v; ξ)]2

[
G(v; ξ)

Ḡ(v; ξ)

]k
e
−λ

[
G(v;ξ)

Ḡ(v;ξ)

]
.

where, h(λ) = 1∑s
k=0 ak

Γ(k+1)

λk+1

.

So,

ln f(v;λ, ξ) = lnh(λ) + ln

s∑
k=0

ak
g(v; ξ)

[Ḡ(v; ξ)]2

[
G(v; ξ)

Ḡ(v; ξ)

]k
e
−λ

[
G(v;ξ)

Ḡ(v;ξ)

]
.

Now, the critical points of the Odds OPPE - G density function are the roots of the
equation:

d

dv
ln f(v;λ, ξ) =

d

dv
ln

{
s∑

k=0

ak
g(v; ξ)

[Ḡ(v; ξ)]2

[
G(v; ξ)

Ḡ(v; ξ)

]k
e
−λ

[
G(v;ξ)

Ḡ(v;ξ)

]}
= 0.

3.3. Quantile function

The quantile function, say Q(u) = F−1(u), of the Odds OPPE - G family is derived
by inverting (3) as follows. Let

u = 1−
∑s

k=0 ak
Γ
(
k+1,λ Q(u)

1−Q(u)

)
λk+1∑s

k=0 ak
Γ(k+1)
λk+1

.

So,

s∑
k=0

ak
Γ
(
k + 1, λ Q(u)

1−Q(u)

)
λk+1

= (1− u)

s∑
k=0

ak
Γ(k + 1)

λk+1
.

Taking Logarithm on both sides, the previous equation is reduced to

ln

s∑
k=0

ak
Γ
(
k + 1, λ Q(u)

1−Q(u)

)
λk+1

− ln(1− u)− ln

s∑
k=0

ak
Γ(k + 1)

λk+1
= 0. (9)

By solving the nonlinear equation (9), numerically, the Odds OPPE - G family random
variable X can be generated, where u has the uniform distribution on the unit interval.
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3.4. Moments

The rth moment of random variable V can be obtained using the pdf (7) as

µ
′

r =

∫ ∞

0
vrf(v, λ, ξ)dv

=

∑s
k=0

∑∞
i,j=0wijk(λ)

∫∞
0 vrhi+j+k(v; ξ)dv∑s

k=0wk(λ)

=

∑s
k=0

∑∞
i,j=0wijk(λ)Ii,j,k,r∑s
k=0wk(λ)

; r = 1, 2, .... (10)

where, Ii,j,k,r =
∫∞
0 vrhi+j+k(v; ξ)dv.

In particular, the mean and variance of Odds OPPE - G family are obtained as follows:

E(V ) =

∑s
k=0

∑∞
i,j=0wijk(λ)Ii,j,k,1∑s
k=0wk(λ)

,

V ar(V ) =

∑s
k=0

∑∞
i,j=0wijk(λ)Ii,j,k,2∑s
k=0wk(λ)

−

[∑s
k=0

∑∞
i,j=0wijk(λ)Ii,j,k,1∑s
k=0wk(λ)

]2
.

Additionally, measures of skewness and kurtosis of the family can be obtained, based
on (10), according to the following relations

γ1 =
µ

′

3 − 3µ
′

2µ
′

1 + 2µ
′3

1(
µ

′

2 − µ
′2

1

)3/2 ,

γ2 =
µ

′

4 − 4µ
′

3µ
′

1 + 6µ
′

2µ
′2

1 − 3µ
′4

1(
µ

′

2 − µ
′2

1

)2 .

3.5. Generating Function

The Moment Generating function(MGF) of Odds OPPE - G family is defined
as

MV (t) =

∞∑
r=0

tr

r!
µ

′

r,

where, µ
′

r is the rth moment about origin. Then the moment generating function of
Odds OPPE - G family is obtained by using (10) as

MV (t) =

∞∑
r=0

tr

r!

[∑s
k=0

∑∞
i,j,r=0wijk(λ)Ii,j,k,r∑s
k=0wk(λ)

]
.

12



Asian Journal of Statistics and Applications Pramanik, S. and Maiti, S. S.

Characteristic Function(CF):

ΨV (t) = E(eitV )

=

∞∑
r=0

(it)r

r!
µ

′

r

=

∞∑
r=0

(it)r

r!

[∑s
k=0

∑∞
i,j,r=0wijk(λ)Ii,j,k,r∑s
k=0wk(λ)

]
.

Cumulant Generating Function(CGF):

KV (t) = ln(MV (t))

= ln

∞∑
r=0

tr

r!

[∑s
k=0

∑∞
i,j,r=0wijk(λ)Ii,j,k,r∑s
k=0wk(λ)

]
.

3.6. Entropy

In Descriptive Statistics, kurtosis measures the shape of the distribution of a random
variable. When a random variable has a heavy-tailed distribution having all or some
non-existent order moments, the kurtosis remains undetermined, and the variation of
the uncertainty in that variable may be measured by entropy. A more general entropy
measure was proposed by Rényi (1961). The Rényi entropy for the Odds OPPE-G
distribution is defined by

HR(β) =
1

1− β
ln

{∫ ∞

0
fβ(v)dv

}

=
1

1− β
ln


∫∞
0

[∑s
k=0

∑∞
i,j=0wijk(λ)hi+j+k(v; ξ)

]β
dv

[
∑s

k=0wk(λ)]
β

 , (11)

where β > 0, β ̸= 1.
A special case of the Rényi entropy when β → 1 is the Shannon entropy and is given
by E {− ln[f(V )]}.

Example 3.1. Consider the Odds Lindley - Exponential distribution. The Rényi en-
tropy for Odds Lindley - Exponential distribution is

HR(β) = − ln θ +
λβ

1− β
− β

1− β
ln(1 + λ)− 2β

1− β
lnβ +

lnΓ (2β, λβ)

1− β

Shannon measure of entropy for Odds Lindley - Exponential distribution

H(f) = E[− ln f(V )] = −2 lnλ− ln θ − λ+ ln(1 + λ) +
eλ

1 + λ
Γ (3, λ)

− 2eλ

(1 + λ)

[
Γ(1)(2, λ)− lnλ.Γ(2, λ)

]

13



Asian Journal of Statistics and Applications Pramanik, S. and Maiti, S. S.

Example 3.2. Consider the Odds Lindley - Pareto distribution. The Rényi entropy
for Odds Lindley - Pareto distribution is

HR(β) = − lnλ

θ
− ln θ + ln a+

λβ

1− β
−

(2β − β
θ + 1

θ )

1− β
lnβ

+
1

1− β
ln Γ

(
2β − β

θ
+

1

θ
, λβ

)
− β

1− β
ln(1 + λ)

Shannon measure of entropy for Odds Lindley - Pareto distribution is

H(f)

= E[− ln f(V )]

= −λ− ln θ + ln a− lnλ

θ
+ ln(1 + λ) +

eλ

1 + λ
Γ (3, λ)− (2θ − 1)eλ

(1 + λ)θ
Γ(1)(2, λ)

3.7. Order Statistics

Order statistics are important in many sectors, including climatology, engineering, and
industry, and play a significant role in real-world applications involving data from life
testing studies. Let Vr:n denote the rth order statistic. The density fr:n(v) of the rth

order statistic, for r = 1(1)n, from independent and identically distributed random
variables V1, V2, .....Vn having the Odds OPPE-G distribution is given by

fr:n(v) = M. [F (v)]r−1 [1− F (v)]n−r f(v)

= M.

n−r∑
l=0

(−1)l
(
n− r

l

)
[F (v)]r+l−1 f(v),

where M = n!
(r−1)!(n−r)!

So,

fr:n(v; Φ) = M.

n−r∑
l=0

(−1)l
(
n− r

l

)1− h(λ)

s∑
k=0

ak
Γ
(
k + 1, λG(v;ξ)

Ḡ(v;ξ)

)
λk+1

r+l−1

.h(λ)

[
s∑

k=0

ak
g(x; ξ)

[Ḡ(v; ξ)]2

[
G(v; ξ)

Ḡ(v; ξ)

]k
e
−λ

[
G(v;ξ)

Ḡ(v;ξ)

]]
. (12)

3.8. Stress-Strength Reliability

A general measure of system performance is the probability of strength (or supply)
exceeding the stress (or demand) and is known as stress-strength reliability. It is
defined by R = P (V1 > V2), where V1 denotes the inbuilt capacity of the system to
withstand, and V2 is the load applied to that system. We derive the expression of
R when V1 and V2 have independent Odds OPPE-G(v; λ1, ξ) and Odds OPPE-G(v;
λ2, ξ) distributions with the same parameter vector ξ for the baseline G. The algebraic
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Figure 5. Stress-Strength Reliability, R for different λ1 and λ2 when θ1 = θ2, of Odds Lindley Exponential

distribution

form of R is given by

R =

∫ ∞

0
f1(v)F2(v)dv

The pdf of V1 and cdf of V2 are obtained from equation (7) and (8) as

f1(v) =

∑s
k=0

∑∞
i,j=0wijk(λ1)g(v; ξ)[G(v; ξ)]i+j+k∑s

k=0wk(λ1)

F2(v) =

∑s
k=0

∑∞
i,j=0wijk(λ2)

G(v;ξ)]i+j+k+1

i+j+k+1∑s
k=0wk(λ2)

.

Hence,

R =

∫ ∞

0
f1(v)F2(v)dv

=

∫ ∞

0


∑s

k=0

∑∞
i,j=0wijk(λ1)g(v; ξ)[G(v; ξ)]i+j+k∑s

k=0wk(λ1)
.

∑s
k=0

∑∞
i,j=0wijk(λ2)

[G(v;ξ)]i+j+k+1

i+j+k+1∑s
k=0wk(λ2)

 dv

Example 3.3. Consider again the Odds Lindley - Exponential distribution. Let, V1 ∼
OLED(λ1, θ1) and V2 ∼ OLED(λ2, θ2) be independent random variables. Then, the
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Figure 6. Stress-Strength Reliability, R for different λ1 and λ2 when θ1 = θ2, and a1 = a2 of Odds Lindley

Pareto distribution

Stress-Strength Reliability is

R = P (V2 < V1)

= 1− λ1
2θ1e

λ1+λ2

(1 + λ1)(1 + λ2)

∫ ∞

0
[1 + λ2e

θ2v]e2θ1ve−λ1eθ1v−λ2eθ2v

dv

If θ1 = θ2 = θ, then

R = 1− λ1
2

(1 + λ1)(1 + λ2)

[
1 + λ2

λ1 + λ2
+

1 + 2λ2

(λ1 + λ2)2
+

2λ2

(λ1 + λ2)3

]
The pictorial view of R for different λ1 and λ2 is shown in Figure 5.

Example 3.4. Take the Odds Lindley - Pareto distribution. Let, V1 ∼
OLPD(λ1, θ1, a1) and V2 ∼ OLPD(λ2, θ2, a2) be independent random variables. Then,
the Stress-Strength Reliability

R = P (V2 < V1)

= 1− λ1
2θ1e

λ1+λ2

(1 + λ1)(1 + λ2)a
2θ1
1

∫ ∞

a1

[1 + λ2(
v

a2
)θ2 ]v2θ1−1e

−λ1(
v

a1
)θ1−λ2(

v

a2
)θ2

dv

If θ1 = θ2 = θ, then

R = 1− λ1
2eλ1+λ2

(1 + λ1)(1 + λ2)a2θ1

[
Γ(2, λ1 + λ2

a1
θ

a2
θ )

(λ1

aθ
1
+ λ2

aθ
2
)2

+
λ2

aθ2

Γ(3, λ1 + λ2
a1

θ

a2
θ )

(λ1

aθ
1
+ λ2

aθ
2
)3

]

16
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Also if a1 = a2, then

R = 1− λ1
2eλ1+λ2

(1 + λ1)(1 + λ2)(λ1 + λ2)2

[
Γ(2, λ1 + λ2) +

λ2

λ1 + λ2
Γ(3, λ1 + λ2)

]
The graphical presentation of R for different λ1 and λ2 is shown in Figure 6.

3.9. Incomplete Moments, Mean Deviations, and Lorenz and Benferroni
Curves

The rth incomplete moment, say, mI
r(t), of the Odds OPPE - G Family of distributions

is given by

mI
r(t) =

∫ t

0
vrf(v,Φ)dv.

We can write from equation (7),

mI
r(t) =

∫ t

0
vr

[∑s
k=0

∑∞
i,j=0wijk(λ)g(v; ξ)[G(v; ξ)]i+j+k∑s

k=0wk(λ)

]
dv. (13)

Example 3.5. rth incomplete moment for Odds Lindley - Exponential distribution is

mI
r(t) =

∫ t

0
vrf(v)dv

=
eλ

(1 + λ)θr

r∑
j=0

(−1)r−j

(
r

j

)
(lnλ)r−j

{
Γ(j)(2, λ)− Γ(j)(2, λeθ)

}
.

rth incomplete moment for Odds Lindley - Pareto distribution is

mI
r(t) =

∫ t

a
vrf(v)dv

=
eλar

(1 + λ)λ
r

θ

[
Γ
(r
θ
+ 2, λ

)
− Γ

(
r

θ
+ 2, λ

(
t

a

)θ
)]

Apart from range and s.d., mean deviation about mean, δ1 and median, δ2 are
used as measures of spread in a population. Incomplete moments are used to define
δ1 = 2µ

′

1F (µ
′

1)− 2mI
1(µ

′

1) and δ2 = µ
′

1 − 2mI
1(µe), respectively. Here, µ

′

1 = E(V ) is to
be obtained from (9) with r = 1, F (µ

′

1) is to calculated from (2), mI
1(µ

′

1) is the first
incomplete moment obtained from (13) with r = 1 and µe is the median of V obtained
by solving (8) for u = 0.5.
The Lorenz and Bonferroni curves are defined by L(p) = mI

1(vp)/µ
′

1 and B(p) =
mI

1(vp)/(pµ
′

1), respectively, where vp = F−1(p) can be computed numerically by (8)
with u = p. These curves are significantly used in economics, reliability, demography,
insurance and medicine. For details on this aspect, we refer to Pundir et al.(2005) and
the references cited therein.
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Figure 7. The Hazard Rate and Reversed Hazard Rate of Odds Lindley - Exponential distribution
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Figure 8. The Hazard Rate and Reversed Hazard Rate of Odds Lindley - Pareto distribution
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3.10. Moments of residual and reversed residual life

The residual life function has ample applications in reliability/survival analysis, social
studies, bio-medical sciences, economics, population study, the insurance industry,
maintenance and product quality control, and product technology. If V is a random
variable denoting the lifetime of a unit at age t, then Vt = [V − t | V > t] is the
remaining lifetime beyond that age t.
The cdf F (v) is uniquely determined by the rth moment of the residual life of V (for
r = 1, 2, ...) [see, Navarro et al. (1998)], and it is given by

mr(t) = E[Vt] =
1

F̄ (t)

∫ ∞

t
(v − t)rdF (v)

=
1

1− F (t)

∫ ∞

t
(v − t)rf(v,Φ)dv.

In particular, if r = 1, then m1(t) represents the mean residual life (MRL) function
that represents the average life length for a unit that is alive at age t.

Example 3.6. Consider the Odds Lindley - Exponential distribution. We have

mr(t) =
eλe

θt

1 + λeθt

r∑
j=0

(−1)j

θj

(
r

j

)
tr−j

j∑
k=0

(−1)j−k

(
j

k

)
(lnλ)j−k Γ(k)(2, λeθt)

For the MRL function,

m1(t) =
eλe

θt

1 + λeθt

[
1

θ
Γ(1)(2, λeθt)−

(
t+

lnλ

θ

)
Γ(2, λeθt)

]
.

Example 3.7. For the Odds Lindley - Pareto distribution, we have

mr(t) =
eλ(

t

a
)θ

1 + λ( ta)
θ

r∑
j=0

(−1)j
(
r

j

)
tr−j a

j

λ
j

θ

Γ(
j

θ
+ 2,

λtθ

aθ
)

For the MRL function,

m1(t) =
eλ(

t

a
)θ

1 + λ( ta)
θ

.

[
a

λ
1

θ

Γ(2 +
1

θ
,
λtθ

aθ
)− tΓ(2,

λtθ

aθ
)

]
.

A dual notion of the residual life called the reversed residual life that takes into
account the past life seems to be worth mentioning [see Di Crescenzo and Longobardi
(2002)]. If the system is found to be in a failed state at a certain preassigned inspection
time t, then failure relies on the past. If X be a random variable denoting the lifetime
of a unit is down at age t, then X̄t = [t − X | X < t] denotes the idle time or
inactivity time or reversed residual life of the unit at age t. The reversed residual life
has applications in forensic science and the insurance sector. For details, see Block et
al.(1998), Chandra and Roy (2001), Maiti and Nanda (2009), and Nanda et al. (2003).
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The rth moment of X̄t (for r = 1, 2, ...) is given by

m̄r(t) = E[V̄t] =
1

F (t)

∫ t

0
(t− v)rdF (v)

=
1

F (t)

∫ t

0
(t− v)rf(v,Φ)dv.

The m̄1(t) represents the mean idle time or inactivity time (MIT) or reversed residual
life (MRRL) function for a unit which is first observed down at age t. Some properties
of MIT function have been studied by Ahmad et al. (2005) and Kayid and Ahmad
(2004).

Example 3.8. For the Odds Lindley - Exponential distribution, we have

m̄r(t) =
eλ

1 + λ− (1 + λeθv)e−λ(eθv−1)

r∑
j=0

(−1)j

θj

(
r

j

)
tr−j

j∑
k=0

(−1)j−k

(
j

k

)
(lnλ)j−k

.
[
γ(k)(2, λeθt)− γ(k)(2, λ)

]
The MRRL function is given by

m̄1(t) =
eλ

1 + λ− (1 + λeθt)e−λ(eθt−1)[
(t+

lnλ

θ
){γ(2, λ)− γ(2, λeθt)} − 1

θ
{γ(1)(2, λ)− γ(1)(2, λeθt)}

]
.

Example 3.9. Consider the Odds Lindley - Pareto distribution and hence

m̄r(t) =
eλ

1 + λ− [1 + λ( ta)
θ]e−λ(( t

a
)θ−1)

r∑
j=0

(−1)j
(
r

j

)
tr−j a

j

λ
j

θ

[
Γ(

j

θ
+ 2, λ)− Γ(

j

θ
+ 2,

λtθ

aθ
)

]
.

For the MRRL function,

m̄1(t) =
eλ

1 + λ− [1 + λ( ta)
θ]e−λ(( t

a
)θ−1)[

t{Γ(2, λ)− Γ(2,
λtθ

aθ
)} − a

λ
1

θ

{Γ(2 + 1

θ
, λ)− Γ(2 +

1

θ
,
λtθ

aθ
)}
]
.

The pictorial views of Mean Residual Life and Mean Reversed Residual Life of the
Odds Lindley-Exponential and Odds Lindley-Pareto distributions have been shown in
Figures 9 and 10, respectively, for illustration purposes.
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Figure 9. Mean Residual Life and Mean Reversed Residual Life of the Odds Lindley - Exponential distribution
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Figure 10. Mean Residual Life and Mean Reversed Residual Life of the Odds Lindley - Pareto distribution
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4. Maximum Likelihood Estimation

In this section, we determine the maximum likelihood estimates(MLEs) of the model
parameters of the new family of distributions from complete samples only. Let
v1, v2, ...., vn be observed values from the Odds OPPE -G family of distributions with
parameters λ and ξ. Let Φ = (λ, ξ)T be the p x 1 parameter vector. The log-likelihood
function for Φ is given by

l(Φ) = n lnh(λ) +

n∑
i=0

ln

{
s∑

k=0

ak
g(v; ξ)

[Ḡ(v; ξ)]2
W k(vi; ξ)e

−λW (vi;ξ)

}
,

where W (vi; ξ) = G(vi; ξ)/Ḡ(vi; ξ). The components of the score function U (Φ) =

(Uλ, Uξ)
T are

Uλ =
n ∂
∂λh(λ)

h(λ)
+

∂

∂λ

n∑
i=0

ln

{
s∑

k=0

ak
g(v; ξ)

[Ḡ(v; ξ)]2
W k(vi; ξ)e

−λW (vi;ξ)

}

and

Uξ =
∂

∂ξ

n∑
i=0

ln

{
s∑

k=0

ak
g(v; ξ)

[Ḡ(v; ξ)]2
W k(vi; ξ)e

−λW (vi;ξ)

}
.

Setting Uλ and Uξ equal to zero and solving the equations simultaneously yields the

MLE Φ̂ =
(
λ̂, ξ̂
)T

of Φ = (λ, ξ)T . These equations cannot be solved analytically, and

statistical software can be used to solve them numerically using iteration methods
such as the Newton-Raphson-type algorithms.

5. Simulation Study

The Monte Carlo Simulation Technique is not directly applicable for generating ran-
dom data from the Odds OPPE - G family of distributions since the equation F(v) = u,
where u is an observation from the uniform distribution on (0,1), cannot be explicitly
solved for v.

To generate random samples Vi, i = 1, 2, 3, .... n, we can use the following algorithm:

(1) Generate Ui ∼ Uniform(0, 1), i = 1(1)n

(2) If
∑j−1

k=0 ak
k!

λk+1∑s
k=0 ak

k!

λk+1

< Ui ≤
∑j

k=0 ak
k!

λk+1∑s
k=0 ak

k!

λk+1

, i = 1(1)s, then set Zi = Wi, where Wi ∼
gamma(j+1, λ).

(3) If Ui ≤
a0

1

λ∑s
k=0 ak

k!

λk+1

, then set Zi = Yi, where Yi ∼ exponential(λ).

After using the odds functional form of G(v; ξ), we get the ultimate random data. For
Odds OPPE - Uniform model, set Vi = θZi/(1 + Zi), for Odds OPPE - Exponential

model, set Vi = log(1 + Zi)/θ, for Odds OPPE - Pareto model, set Vi = a(1 + Zi)
1

θ ,

and for Odds OPPE - Burr XII model, set Vi = [(1+Zi)
1

θ −1]
1

α for generating random
observation.
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Here, we assume s = 1, a0 = 1, a1 = 1 to get odds Lindley- Uniform, odds Lindley-
Exponential, odds Lindley- Pareto, and odds Lindley- Burr XII distribution.

A Monte Carlo simulation study was carried out 1000 (=N) times for selected values
of n, λ, α, and θ.
(a) Simulation study for Odds Lindley - Uniform distribution, for first simulation,
samples of sizes 20, 40, and 100 were considered, and values of λ were taken as 0.5, 1,
1.5, 3, and 6 for fixed θ=0.1. For the second simulation, samples of sizes 20, 40, and
100 were considered, and values of θ were taken as 0.1, 0.5, 1.0, 1.5, and 3 for fixed
λ=0.1.
(b) Simulation study for Odds Lindley - Exponential distribution, for the first simu-
lation, samples of sizes 20, 40, and 100 were considered, and values of λ were taken as
0.1, 0.5, 1.5, 3, and 6 for fixed θ=0.1. For the second simulation, samples of sizes 20,
40, and 100 were considered, and values of θ were taken as 0.01, 0.5, 1.0, 1.5, and 3
for fixed λ=0.1.
(c) Simulation study for Odds Lindley - Pareto distribution, samples of sizes 20, 40,
and 100 were considered, and different values of λ, θ, and a were considered.
(d) Simulation study for Odds Lindley - Burr XII distribution, samples of sizes 20, 40,
and 100 were considered, and different values of λ, θ, and α were considered.
The required numerical evaluations are carried out using R 3.1.1 software. The follow-
ing two measures were computed:

(1) Bias of the simulated estimates λ̂, α̂ and θ̂, for i=1, 2, 3, .....,N:
1
N

∑N
i=1(λ̂i − λ), 1

N

∑N
i=1(α̂i − α) and 1

N

∑N
i=1(θ̂i − θ),

(2) Mean Square Error (MSE) of the simulated estimates λ̂, α̂ and θ̂, for i=1, 2, 3,
.....,N:
1
N

∑N
i=1(λ̂i − λ)2, 1

N

∑N
i=1(α̂i − α)2 and 1

N

∑N
i=1(θ̂i − θ)2.

The results of the simulation study for Odds Lindley - Uniform distribution have
been tabulated in Table 6. It shows that
(i) Bias and MSE decreases as n increases.
(ii) Bias and MSE increases as the values of λ increases for fixed θ=0.1.
(iii) Bias and MSE increase as the values of θ increase for fixed λ=0.1.

The results of the simulation study for Odds Lindley - Exponential distribution
have been tabulated in Table 7. It shows that
(i) Bias and MSE decreases as n increases.
(ii) Bias and MSE increases as the values of λ increases for fixed θ=0.1.
(iii) Bias and MSE increase as the values of θ increase for fixed λ=0.1.

The results of the simulation study for Odds Lindley - Pareto distribution have
been tabulated in Table 8. It shows that
(i) Bias and MSE decreases as n increases.
(ii) Bias and MSE increase as the values of λ and θ increase for fixed a=0.1.
(iii) Bias and MSE increase as the values of λ and a increase for fixed θ=1.

The results of the simulation study for Odds Lindley - Burr XII distribution have
been tabulated in Table 9. It shows that
(i) Bias and MSE decreases as n increases.
(ii) Bias and MSE increase as the values of θ and α increase for fixed λ=0.1.
(iii) Bias and MSE increases as the values of λ and α increases for fixed θ=0.1.
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Table 6. Average Bias and MSE of the estimator of λ̂ and θ̂ for Odds Lindley - Uniform distribution

λ̂ = 0.5 θ̂ = 0.1
n Bias MSE Bias MSE
20 -0.2776 0.0900 -0.0097 0.0003
40 -0.2754 0.0852 -0.0082 0.0002
100 -0.2646 0.0766 -0.0070 0.0001

λ̂ = 1 θ̂ = 0.1
n Bias MSE Bias MSE
20 -0.5729 0.3665 -0.0184 0.0004
40 -0.5638 0.3661 -0.0160 0.0003
100 -0.5513 0.3301 -0.0136 0.0002

λ̂ = 1.5 θ̂ = 0.1
n Bias MSE Bias MSE
20 -0.8772 0.8744 -0.0260 0.0007
40 -0.8749 0.8414 -0.0225 0.0005
100 -0.8422 0.7634 -0.0195 0.0004

λ̂ = 3 θ̂ = 0.1
n Bias MSE Bias MSE
20 -1.9486 4.1142 -0.0423 0.0018
40 -1.9478 4.0112 -0.0383 0.0015
100 -1.8676 3.6703 -0.0338 0.0012

λ̂ = 6 θ̂ = 0.1
n Bias MSE Bias MSE
20 -4.4572 20.688 -0.0608 0.0038
40 -4.4059 19.969 -0.0562 0.0032
100 -4.2437 18.447 -0.0516 0.0027

λ̂ = 0.1 θ̂ = 0.1
n Bias MSE Bias MSE
20 -0.0561 0.0036 -0.0020 0.0003
40 -0.0557 0.0035 -0.0017 0.0002
100 -0.0536 0.0031 -0.0014 0.0001

λ̂ = 0.1 θ̂ = 0.5
n Bias MSE Bias MSE
20 -0.0568 0.0037 -0.0097 0.0003
40 -0.0565 0.0036 -0.0085 0.0002
100 -0.0533 0.0031 -0.0071 0.0001

λ̂ = 0.1 θ̂ = 1
n Bias MSE Bias MSE
20 -0.0556 0.0036 -0.0195 0.0004
40 -0.0555 0.0035 -0.0166 0.0003
100 -0.0529 0.0031 -0.0142 0.0002

λ̂ = 0.1 θ̂ = 1.5
n Bias MSE Bias MSE
20 -0.0576 0.0038 -0.0298 0.0009
40 -0.0551 0.0034 -0.0253 0.0007
100 -0.0526 0.0030 -0.0213 0.0005

λ̂ = 0.1 θ̂ = 3
n Bias MSE Bias MSE
20 -0.0563 0.0037 -0.0591 0.0037
40 -0.0555 0.0034 -0.0503 0.0027
100 -0.0529 0.0031 -0.0426 0.0019
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Table 7. Average Bias and MSE of the estimator of λ̂ and θ̂ for Odds Lindley - Exponential distribution

λ̂ = 0.1 θ̂ = 0.1
n Bias MSE Bias MSE
20 0.0160 0.0026 0.0297 0.0012
40 0.0142 0.0017 0.0269 0.0008
100 0.0125 0.0008 0.0250 0.0007

λ̂ = 0.5 θ̂ = 0.1
n Bias MSE Bias MSE
20 -0.1501 0.0361 0.0715 0.0057
40 -0.1414 0.0270 0.0667 0.0047
100 -0.1321 0.0203 0.0631 0.0041

λ̂ = 1.5 θ̂ = 0.1
n Bias MSE Bias MSE
20 -0.8637 0.7744 0.1610 0.0286
40 -0.8432 0.7272 0.1489 0.0234
100 -0.8184 0.6767 0.1395 0.0199

λ̂ = 3 θ̂ = 0.1
n Bias MSE Bias MSE
20 -2.2043 4.8961 0.2995 0.0991
40 -2.1562 4.6724 0.2688 0.0762
100 -2.1208 4.5102 0.2529 0.0657

λ̂ = 6 θ̂ = 0.1
n Bias MSE Bias MSE
20 -5.2467 27.879 0.6196 0.4522
40 -5.0995 26.209 0.5408 0.3258
100 -4.9878 24.955 0.4782 0.2396

λ̂ = 0.1 θ̂ = 0.01
n Bias MSE Bias MSE
20 0.0137 0.0027 0.0031 0.0003
40 0.0111 0.0014 0.0028 0.0002
100 0.0104 0.0007 0.0026 0.0001

λ̂ = 0.1 θ̂ = 0.5
n Bias MSE Bias MSE
20 0.0141 0.0050 0.1576 0.0326
40 0.0116 0.0014 0.1388 0.0223
100 0.0053 0.0007 0.1287 0.0177

λ̂ = 0.1 θ̂ = 1
n Bias MSE Bias MSE
20 0.0158 0.0069 0.3091 0.1306
40 0.0114 0.0026 0.2755 0.0880
100 0.0070 0.0008 0.2510 0.0673

λ̂ = 0.1 θ̂ = 1.5
n Bias MSE Bias MSE
20 0.0147 0.0052 0.4628 0.2815
40 0.0112 0.0015 0.4147 0.1981
100 0.0080 0.0008 0.3819 0.1561

λ̂ = 0.1 θ̂ = 3
n Bias MSE Bias MSE
20 -0.3464 0.3641 1.0259 2.2555
40 -0.3392 0.3578 0.9580 1.9045
100 -0.3315 0.3486 0.8696 1.6765
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Table 8. Average Bias and MSE of the estimator of λ̂, θ̂ and a for Odds Lindley - Pareto distribution

λ̂ = 1 θ̂ = 1 â = 0.1
n Bias MSE Bias MSE Bias MSE
20 0.2650 0.6347 0.1656 0.1885 0.0092 0.0003
40 0.0660 0.2070 0.0673 0.0701 0.0048 0.0002
100 0.0370 0.0671 0.0175 0.0228 0.0020 0.0001

λ̂ = 0.1 θ̂ = 1 â = 0.1
n Bias MSE Bias MSE Bias MSE
20 0.2336 0.1435 0.0833 0.0708 0.2371 0.0869
40 0.1213 0.0622 0.0432 0.0307 0.1440 0.0322
100 0.0573 0.0320 0.0147 0.0116 0.0733 0.0087

λ̂ = 0.5 θ̂ = 2 â = 0.1
n Bias MSE Bias MSE Bias MSE
20 0.1601 0.2125 0.1923 0.4370 0.0121 0.0003
40 0.0948 0.1096 0.0741 0.1847 0.0067 0.0002
100 0.0346 0.0365 0.0382 0.0619 0.0028 0.0001

λ̂ = 0.5 θ̂ = 2 â = 0.5
n Bias MSE Bias MSE Bias MSE
20 0.1396 0.2372 0.2277 0.4636 0.0589 0.0060
40 0.0938 0.1213 0.0898 0.1728 0.0338 0.0020
100 0.0372 0.0376 0.0327 0.0599 0.0147 0.0004

λ̂ = 1 θ̂ = 1 â = 0.5
n Bias MSE Bias MSE Bias MSE
20 0.4334 0.6902 0.1434 0.1785 0.0469 0.0045
40 0.0775 0.2066 0.0558 0.0648 0.0244 0.0011
100 0.0311 0.0808 0.0268 0.0270 0.0098 0.0002
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Table 9. Average Bias and MSE of the estimator of λ̂, θ̂ and α̂ for Odds Lindley - Burr XII distribution

λ̂ = 0.1 θ̂ = 0.1 α̂ = 0.1
n Bias MSE Bias MSE Bias MSE
20 -0.0030 0.0037 0.0129 0.0144 0.0222 0.0068
40 -0.0011 0.0015 0.0078 0.0072 0.0165 0.0034
100 -0.0002 0.0007 0.0046 0.0068 0.0117 0.0019

λ̂ = 0.1 θ̂ = 0.5 α̂ = 0.1
n Bias MSE Bias MSE Bias MSE
20 -0.0127 0.0051 0.1157 0.5855 0.1019 0.0285
40 -0.0103 0.0024 0.1054 0.4946 0.0914 0.0222
100 -0.0068 0.0010 0.0390 0.2629 0.0747 0.0175

λ̂ = 0.1 θ̂ = 0.5 α̂ = 0.5
n Bias MSE Bias MSE Bias MSE
20 -0.0133 0.0043 0.1516 0.7191 0.6022 0.8379
40 -0.0117 0.0024 0.0996 0.5498 0.5712 0.7528
100 -0.0081 0.0011 0.0494 0.3546 0.4923 0.6174

λ̂ = 0.5 θ̂ = 0.1 α̂ = 0.1
n Bias MSE Bias MSE Bias MSE
20 -0.0144 0.0667 -0.0124 0.0361 0.2779 0.2553
40 -0.0061 0.0313 -0.0087 0.0135 0.2356 0.1801
100 -0.0060 0.0109 -0.0040 0.0055 0.1485 0.0997

λ̂ = 0.5 θ̂ = 0.1 α̂ = 0.5
n Bias MSE Bias MSE Bias MSE
20 -0.0082 0.0632 -0.0155 0.0501 1.1588 3.7477
40 -0.0016 0.0296 -0.0118 0.0178 1.0481 2.7680
100 -0.0010 0.0125 -0.0016 0.0043 0.6658 1.5149
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Table 10. Summarized results of fitting different distributions for data set 1

Distribution Estimate of the parameters Log-likelihood AIC

Extended Burr XII Distribution ĉ = 2.8689, λ̂ = 0.8811 −39.2000 82.4000

Odds Lindley Burr XII Distribution λ̂ = 1.5521, θ̂ = 0.3949, α̂ = 2.4772 −38.1627 82.3255

Table 11. Summarized results of fitting different distributions for data set 2

Distribution Estimate of the parameters Log-likelihood AIC

EEFr α̂ = 29.5053, β̂ = 0.6415, θ̂ = 0.7419, δ = 928.9561 −583.317 1174.634

Odds Lindley Burr XII λ̂ = 0.00066, θ̂ = 0.62758, α̂ = 2.53804 −581.821 1169.643

6. Application

In this section, we fit different probability models belonging to the Odds OPPE-G
family to four real data sets.
Data Set 1: The first data set consists of thirty successive values of March precipita-
tion (in inches) in Minneapolis/St Paul (Hinkley 1977). The data are: 0.77, 1.74, 0.81,
1.2, 1.95, 1.2, 0.47, 1.43, 3.37, 2.2, 3, 3.09, 1.51, 2.1, 0.52, 1.62, 1.31, 0.32, 0.59, 0.81,
2.81, 1.87, 1.18, 1.35, 4.75, 2.48, 0.96, 1.89, 0.9, 2.05. Ghosh and Bourguignon (2017)
fitted this data to the Extended Burr XII distribution. We have fitted this data set
with the Odds Lindley Burr XII distribution. The estimated values of the parameters
were λ̂ = 1.5521, θ̂ = 0.3949 and α̂ = 2.4772 with Log-Likelihood=−38.1627 and AIC
= 82.3255. Histogram and fitted Odds Lindley Burr XII curve to data set 1 have been
shown in Figure 11.

Data Set 2: The second data set consists of the annual maximum daily precipita-
tion (unit: mm) at Busan, Korea, for the period 1904 to 2011. The data were obtained
from the Korean Meteorological Administration(2013). The data are: 24.8, 140.9, 54.1,
153.5, 47.9, 165.5, 68.5, 153.1, 254.7, 175.3, 87.6, 150.6, 147.9, 354.7, 128.5, 150.4, 119.2,
69.7, 185.1,153.4, 121.7, 99.3, 126.9, 150.1, 149.1, 143, 125.2, 97.2, 179.3,125.8, 101,
89.8, 54.6, 283.9, 94.3, 165.4, 48.3, 69.2, 147.1, 114.2, 159.4, 114.9, 58.5, 76.6, 20.7,
107.1, 244.5, 126, 122.2, 219.9, 153.2, 145.3, 101.9, 135.3, 103.1, 74.7, 174, 126, 144.9,
226.3, 96.2, 149.3, 122.3, 164.8, 188.6, 273.2, 61.2, 84.3, 130.5, 96.2, 155.8, 194.6, 92,
131, 137, 106.8, 131.6, 268.2, 124.5, 147.8, 294.6, 101.6, 103.1, 247.5, 140.2, 153.3,
91.8, 79.4, 149.2,168.6, 127.7, 332.8, 261.6, 122.9, 273.4, 178, 177, 108.5, 115,241, 76,
127.5, 190, 259.5, 301.5. The histogram shows that the data set is positively skewed.
Mansoor et al.(2016) fitted this data to the Exponentiated Extended Frechet Distri-
bution(EEFr). We have fitted this data set with the Odds Lindley Burr XII distri-

bution. The estimated values of the parameters were λ̂ = 0.00066, θ̂ = 0.62758 and
α̂ = 2.53804 with Log-Likelihood=−581.8215 and AIC = 1169.643. Histogram and
fitted Odds Lindley Burr XII curve to data set 2 have been shown in Figure 12.

Data Set 3: The third real data set represents the survival times in weeks of 33
patients suffering from acute myelogenous leukemia. These data have been analyzed
by Feigl and Zelen (1965). The data are: 65, 156, 100, 134, 16, 108, 121, 4, 39, 143,
56, 26, 22, 1, 1, 5, 65, 56, 65, 17, 7, 16, 22, 3, 4, 2, 3, 8, 4, 3, 30, 4, 43. The histogram
shows that the data set is positively skewed. Mead et al.(2017) fitted this data to
the Beta Exponential Frechet distribution(BExFr). We have fitted this data set with
the Odds Aradhana-Pareto distribution. The estimated values of the parameters are
λ = 0.81667, θ = 0.39864, a = 1, log-likelihood =−145.8608 and AIC = 297.7216.
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Figure 11. Plots of the estimated pdf and cdf of the Odds Lindley Bur XII model for data set 1
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Figure 12. Plots of the estimated pdf and cdf of the Odds Lindley Burr XII model for data set 2
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Table 12. Summarized results of fitting different distributions to data set 3

Distribution Estimate of the parameters Log-likelihood AIC

BExFr θ̂ = 29.588, β̂ = 0.111, â = 21.041, b̂ = 19.731, λ̂ = 1.725 −154.058 318.12

Odds Aradhana Pareto λ̂ = 0.8167, θ̂ = 0.3986, â = 1 −145.861 297.72
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Figure 13. Plots of the estimated pdf and cdf of the Odds Aradhana Pareto model for data set 3

Histogram and fitted Odds Aradhana Pareto curve to data have been shown in Figure
13.

Data Set 4: The fourth real data set represents breaking stress of carbon fibres
(Gba). The data set consists of 100 observations. The data are: 3.70, 2.74, 2.73, 2.50,
3.60, 3.11, 3.27, 2.87, 1.47, 3.11, 4.42, 2.41, 3.19, 3.22, 1.69, 3.28, 3.09, 1.87, 3.15,
4.90, 3.75, 2.43, 2.95, 2.97, 3.39, 2.96, 2.53, 2.67, 2.93, 3.22, 3.39, 2.81, 4.20, 3.33, 2.55,
3.31, 3.31, 2.85, 2.56, 3.56, 3.15, 2.35, 2.55, 2.59, 2.38, 2.81, 2.77, 2.17, 2.83, 1.92, 1.41,
3.68, 2.97, 1.36, 0.98, 2.76, 4.91, 3.68, 1.84, 1.59, 3.19, 1.57, 0.81, 5.56, 1.73, 1.59, 2.00,
1.22, 1.12, 1.71, 2.17, 1.17, 5.08, 2.48, 1.18, 3.51, 2.17, 1.69, 1.25, 4.38, 1.84, 0.39, 3.68,
2.48, 0.85, 1.61, 2.79, 4.70, 2.03, 1.80, 1.57, 1.08, 2.03, 1.61, 2.12, 1.89, 2.88, 2.82, 2.05,
3.65. The histogram shows that the data set is approximately symmetric. Boikanyo et
al.(2018) fitted this data to the Exponentiated Burr XII Weibull Distribution. We have
fitted this data set with the Odds Lindley-Pareto distribution. The estimated values
of the parameters are λ = 0.0438, θ = 1.9349, a = 0.39, log-likelihood =−136.8601
and AIC = 279.7203. Histogram and fitted Odds Lindley-Pareto curve to data have
been shown in Figure 14.

Table 13. Summarized results of fitting different distributions to data set 4

Distribution Estimate of the parameters Log-likelihood AIC

EBW α̂ = 0.099, β̂ = 2.5746, δ̂ = 1.2187, ĉ = 32.602, k̂ = 0.0019 −141.258 292.516

Odds Lindley Pareto λ̂ = 0.0438, θ̂ = 1.9349, â = 0.39 −136.860 279.720
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Figure 14. Plots of the estimated pdf and cdf of the Odds Lindley-Pareto model for data set 4

7. Concluding Remarks

We have introduced and studied a new generalized family of distributions called the
Odds OPPE - G Family of distributions. Properties of the Odds OPPE - G Fam-
ily of distributions include an expansion for the density function and expressions for
the quantile function, moment generating function, ordinary moments, incomplete
moments, mean deviations, Lorenz and Bonferroni curves, reliability properties in-
cluding mean residual life and mean inactivity time and order statistics. The method
of maximum likelihood is employed to estimate the model parameters. To illustrate
the flexibility of the proposed model, four actual data sets are fitted. Compared to
regular models, the discussed models provide better fitting. The article’s findings are
anticipated to be very helpful for professionals in various applied sciences, statistics,
and probability sectors.
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